Performance Analysis and Comparision of Reduced Order Systems using Chebyshev polynomial, Improved Pole Clusteringand Fuzzy C-means Clustering Techniques

نویسنده

  • Maneesh Kumar Gupta
چکیده

A mixed method for model order reduction of a linar, single input-single output systemis presented. The denominator of the original system is reduceedby using modified pole clustering techniques and fuzzy C-means clustering algorithm. The Chebyshev polynomial has been used for reducing the numerator of higher order transfer function.Then the result has been compared for boththe reduction techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Improved Pade-Pole Clustering Approach using Genetic Algorithm for Model Order Reduction

Reducing the order of higher order systems by mixed approach is Improved Pade-Pole clustering based method to derive a reduced order approximation for a stable continuous time system is presented. In this method, the denominator polynomial of the reduced order model is derive by improved pole-clustering approach and the numerator polynomial are obtain through Padé approximation technique and by...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

Application of Fuzzy C-Means Clustering in Power System Model Reduction for Controller Design

-This paper presents the application of fuzzy c-means (FCM) clustering in the order reduction of dynamic models for controller design in a power system. Based on the fuzzy c-means algorithm, a method is proposed for clustering the poles and zeros of the original power system model into new clusters from which a reduced-order model can be obtained. Then the reduced-order model is used to design ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017